Research Areas
Synthesis and structural characterization of nanoscale multifunctional materials: Nanoscale materials have a wealth of potential applications due to their possession of properties that are difficult to emulate in larger structures. Improving methods of synthesizing these materials allows for greater freedom to manipulate their behavior by controlling their growth down to the atomic level, while characterizing them requires specialized methods in order to reveal structural information and interactions between different materials. The REER laboratory has successfully synthesized numerous nanoscale materials, such as 1-D nanostructures (i.e., carbon nanotubes, ZnO nanowires, Fe2O3 nanorods, TiO2 nanowires, and Ag nanowires), 2-D nanostructures (i.e., graphene and transition metal dichalcogenide), and nanoparticles (i.e., Pt, Pd, Au, Ag, Fe, Co, and Ni).
Fabrication and electrical characterization of energy conversion and storage devices: Current challenges with essential devices such as solar cells, batteries, supercapacitors, sensors, and fuel cells may be addressed by taking advantage of nanoscale materials after determining their properties as described above. They may fulfill new needs left unfilled by traditional materials, serve as replacements for expensive yet essential components such as noble metals, or even boost the capabilities of such materials. The REER Laboratory is currently working on the fabrication and characterization of the following devices: solar cells, supercapacitors, lithium batteries, biosensors, chemical sensors, field effect transistors, and direct hydrogen/methanol/ethanol fuel cells.
Advancing the science and engineering for wastewater treatment and desalination: The REER Laboratory is utilizing nanoscale materials to integrate and optimize current systems for wastewater treatment (photocatalysis, microfiltration, ultrafiltration, and nanofiltration) and desalination (reverse osmosis).